Спортивный портал - AirsoftCfs

Успокоитель качки на маломерных судах. Методы и средства уменьшения качки судна при бурении на шельфе. Вопросы для самоконтроля

Успокоителями качки принято называть устройства, которые применяются для уменьшения амплитуды качки судна.

Действие установленных на судне успокоителей качки состоит в том, что они создают переменный стабилизирующий момент, противоположный по знаку возмущающему моменту волны. В настоящее время применяются успокоители только бортовой качки. Уменьшить амплитуды килевой и вертикальной качки с помощью успокоителей практически трудно, т. к. еще не созданы успокоители, способные развивать значительно большие, чем при бортовой качке, стабилизирующие моменты.

Успокоители качки делятся на пассивные и активные. Действие рабочих органов пассивных успокоителей основано на создании стабилизирующего момента за счет колебательных движений судна во время качки, т. е. при их использовании отпадает необходимость в специальных источниках энергии. В активных успокоителях переменный стабилизирующий момент создается принудительно с помощью особых механизмов, управляемых специальным регулирующим устройством, которое, в свою очередь, реагирует на колебания судна. Активные успокоители более эффективны, но на их работу нужно затрачивать дополнительную мощность.

Пассивные успокоители. К числу пассивных успокоителей качки относятся скуловые кили и пассивные успокоительные цистерны.

Скуловые кили являются наиболее простым и эффективным средством уменьшения бортовой качки и потому находят самое широкое применение.

Пассивные успокоительные цистерны могут быть двух типов: закрытого, не сообщающеегося с забортной водой (I рода) и открытого, сообщающегося с забортной водой (II рода). Цистерны наполовину заполнены водой (иногда топливом) и соединены каналами. Пассивные успокоительные цистерны наиболее эффективны при резонансной качке. При некоторых условиях и режимах нерегулярного волнения такие успокоители могут привести к увеличению амплитуд качки. Наличие свободной поверхности жидкости в цистернах также неблагоприятно влияет на остойчивость судна. Вследствие указанных причин пассивные цистерны в настоящее время практически не используются.

Рис. 1 Рис. 2 Состав успокоительной цистерны. 1 – скуловой киль, 2 – усиление, 3 – бортовая качка, 4 – сопротивление демпфирования скуловых килей Рис. 3 Успокоительные цистерны. 1 - успокоительные цистерны; 2 - воздушный вентиль; 3 - соединительный воздушный канал; 4 - бортовые диптанки; 5 - переливной канал; б - бортовая качка судна; 7 - вода в цистерне Рис. 4 Судовой гироскоп. 1 - момент М гироскопа; 2 – кренящий момент М; 3 - пара сил в качающемся рамочном подшипнике; 4 - ось вращения гироскопа; 5 - прецессия; 6 - тормозной момент качающегося рамочного подшипника; 7 - направление поворота гироскопа (угловая скорость) ; 8 - скорость прецессии

Активные успокоители. К активным успокоителям качки относятся бортовые управляемые рули, активные успокоительные цистерны и гироскопические успокоители — стабилизаторы.

Рис. 5 Рис. 6 Активные боковые рули. 1 - втягивающиеся рули; 2 - заваливающиеся рули; 3 - силы, действующие на рули; 4 - направление хода судна, 5 - направление бортовой качки 6 - вращающий момент рулей

Бортовые управляемые рули являются весьма эффективным средством уменьшения бортовой качки и получили широкое распространение на транспортных и особенно на пассажирских судах. Они размещены на специальных приводах, обеспечивающих изменение углов атаки по определенному закону, выдвижение их из корпуса и уборку внутрь корпуса.

Практика показывает, что бортовые рули целесообразно применять при скоростях, превышающих 10–15 узл. В этом случае бортовые рули приводят к значительному (в несколько раз) снижению амплитуд бортовой качки.

Активные успокоительные цистерны обычно выполняют в виде цистерн I рода. Для регулирования движения воды применяют либо насосы, установленные в водяном канале, либо воздуходувы, расположенные в воздушном канале.
Управление насосом или воздуходувкой осуществляется с помощью специальной автоматики таким образом, чтобы можно было регулировать подачу воды из одной цистерны в другую и обеспечивать требуемое изменение стабилизирующего момента. Эффективность установки не зависит от скорости судна: цистерны одинаково умеряют качку на ходу и на стоянке. Недостатки активных цистерн: сложность конструкции, высокая стоимость, применение сложной регулирующей аппаратуры, снижение грузоподъемности судна и необходимость затрат дополнительной энергии.

Гироскопический успокоитель качки представляет собой мощный гироскоп, вращающийся на оси в раме. Гироскоп устанавливают вертикально. Крен судна при бортовой качке вызывает поворот оси гироскопа — так называемую прецессию гироскопа. Вследствие этого возникает гироскопический момент, который является стабилизирующим моментом успокоителя. Гироскопические успокоители могут быть как пассивными, так и активными. У пассивного успокоителя прецессия возникает как реакция на качку судна. В активных успокоителях прецессия создается принудительно за счет передачи внешней энергии электродвигателю, управляемому автоматическим регулятором, реагирующим на режим качки судна. Недостатки: значительная масса, большая стоимость, сложность устройства и эксплуатации (рис. 4).

Определение метацентрической высоты судна по периоду бортовой качки

В процессе эксплуатации судоводителю часто необходимо проконтролировать значения метацентрической высоты судна при различных случаях его нагрузки. Такая необходимость возникает, например, по мере расходования запасов пресной воды и топлива, когда решается вопрос о целесообразности приема балласта. Опыт кренования дает вполне надежные результаты, но требует много времени, определенных условий и специальной подготовки.

Значительно проще можно оценить поперечную метацентрическую высоту h, если известны период бортовой качки Т θ и коэффициент С по формуле, полученной из капитанской формулы:

h = 4 · C 2 · B 2 T θ 2

Период качки Т θ можно определить с помощью записи затухающих свободных колебаний судна гироскопическими кренографами либо инклинографами, снабженными отметчиками времени.

Практически период качки Т θ можно определить следующим образом. Когда судно находится в одном из крайних наклоненных положении, включают секундомер. Отсчитав 10 полных колебаний, останавливают секундомер в момент, когда судно приходит в исходное наклонное положение. Период Т θ определяют, разделив отсчитанное по секундомеру время на 10.

Описанный приближенный способ дает удовлетворительные результаты при отсутствии на судне свободных поверхностей жидких грузов, а также в том случае, когда поправка на их влияние составляет не более 5 % метацентрической высоты для данной нагрузки.

Результат вычисления метацентрической высоты h зависит и от удачного выбора значения коэффициента С, входящего в выражение для h. Для этого необходимо принимать его значения по известным значениям коэффициента С, для однотипных или близких по конструкции судов. Коэффициент С = 0,36 ± 0,43 в зависимости от типа судна.

Предлагается к прочтению:

Тема 2.1 Качка.


Успокоители качки.

Пассивные успокоители. К числу пассивных успокоителей качки относятся скуловые кили и пассивные успокоительные цистерны .

Скуловые кили являются наиболее простым и эффективным средством умерения бортовой качки и потому находят самое широкое применение. стабилизирующее действие скуловых килей обусловлено ростом демпфирующего момента, создаваемого дополнительными силами сопротивления качке, которые наиболее ощутимы при резонансе. Кроме того, при качке на килях правого и левого бортов, как на крыльях, возникают подъемные силы противоположного направления, создающие дополнительный стабилизирующий момент.

В конструктивном отношении скуловые кили (Рис.51) представляют собой пластины, установленные вдоль судна в районе скулы. Кили располагают так, чтобы они не выходили за габариты судна. Суммарная площадь килей на обоих бортах составляет от 3% до 6% произведения LB. Эффективность бортовых килей в большой степени зависит от удачно выбранного отношения их ширины к протяженности. Ширина Рис.51 Скуловые кили. килей колеблется в пределах от 200 до 1200 мм. В среднем

отношение ширины килей к ширине судна составляет 0,03 – 0,05, а их длина к длине судна – 0,25 – 0,60. Установка килей большей площади приводит к уменьшению амплитуды резонансной качки на 45 – 50%. В условиях нерегулярного волнения бортовые кили нормальной площади уменьшают амплитуду бортовой качки в среднем на 20 – 30%.

Пассивные успокоительные цистерны. Пассивные успокоительные цистерны могут быть двух типов: закрытого , не сообщающегося с забортной водой (цистерны первого рода) (Рис. 52а), и открытого , сообщающегося с забортной водой (цистерны второго рода) (Рис. 52б). Они представляют собой две плоские бортовые цистерны, расположенные поперек судна. Цистерны на половину заполнены водой (у цистерн 1 рода – иногда топливом) и соединены каналами. Цистерны 1 рода имеют два канала – водяной (внизу) и воздушный (вверху). снабженный клапаном. У цистерн второго рода водяной соединительный канал отсутствует, т.к. в бортовых стенках имеются отверстия, которые сообщаются с забортной водой.

Принцип действия таких цистерн основан на создании стабилизирующего момента за счет перемещения массы жидкости из одного бортового отсека в другой. Перемещение жидкости вызывается качкой судна и не требуют дополнительных энергетических Рис. 52 Пассивные успокоительные цистерны: затрат. Подбором элементов цистерн, 1 – бортовые цистерны; 2 – воздушный канал размеров каналов и регулировкой 3 – клапан; 4 – водяной канал. клапана можно добиться равенства

периода колебаний жидкости в цистернах и периода собственных колебаний судна. Вследствие этого при резонансной качке возникает явление двойного резонанса: судно отстает по фазе от колебаний волны на 90 0 , а жидкость в цистернах – на 90 0 от колебаний судна. Суммарное отставание по фазе составляет 180 0 , цистерны работают в противофазе с водой (Рис.53), а возникающий стабилизирующий момент оказывается противоположным по знаку возмущающему моменту и противодействует наклонению судна.

Пассивные успокоительные цистерны наиболее эффективны при резонансной качке и менее эффективны на нерезонансных волнах. При некоторых условиях и режимах нерегулярного волнения такие успокоители могут привести к увеличению амплитуд качки.

Рис. 53 Последовательное положение воды в успокоительных цистернах при резонансной

качке судна.

Наличие свободной поверхности жидкости в цистернах также неблагоприятно влияет на остойчивость судна. Вследствие указанных причин пассивные цистерны в настоящее время практически не применяются.

Активные успокоители. К активным успокоителям качки относятсябортовые управляемые рули, активные успокоительные цистерны и гироскопические успокоители – стабилизаторы .

Бортовые управляемые рули являются весьма эффективным средством умерения

бортовой качки и получили широкое распространение на транспортных и особенно на пассажирских судах. Они представляют собой крылья малого удлинения, которые устанавливаются по бортам судна в районе скуловой части. Крылья размещены на специальных приводах, обеспечивающих изменение углов атаки по определенному закону, выдвижение их из корпуса и уборку внутрь корпуса(Рис. 54). Размеры и площадь управляемых рулей определяют путем соответствующего расчета в зависимости от наименьшей скорости судна, при которой предлагают их использовать.

Принцип действия бортовых управляемых рулей основан на возникновении стабилизирующего момента, противодействующего качке, путем надлежащей перекладки рулей. Стабилизирующий момент создается подъемными силами, образующимися на рулях правого и левого бортов при их обтекании потоком.

При положении, когда судно кренится с левого Рис. 54 Управляемые бортовые рули. борта на правый, а рули переложены так, что

хвостовая часть руля правого борта опущена вниз, а хвостовая часть левого борта поднята кверху, то в таком положении на руле правого борта возникает подъемная сила, направленная вверх, а на руле левого борта – подъемная сила, направленная вниз. Благодаря этому создается момент, противодействующий размаху качки.

Управление приводами рулей осуществляется комплексом специальных автоматических приборов, которые обеспечивают непрерывное измерение гироскопическими датчиками параметров качки судна (угла крена, угловой скорости и углового ускорения), вычисление подъемной силы и угла атаки руля и последующую подачу

команд на гидравлический привод, который обеспечивает необходимую перекладку рулей. Пост управления всей системой находится на мостике судна, а блоки силовых и исполнительных механизмов – в непосредственной близости от рулей в машинном отделении.

Эффективность работы бортовых управляемых рулей зависит от скорости судна, поскольку силы, создаваемые каждым рулем, пропорциональны квадрату скорости набегающего потока. Практика показала, что целесообразно применять бортовые рули при скоростях, превышающих 10 – 15 уз.

Вопросы для самоконтроля:

1.Для чего на судне устанавливают успокоители качки?

2.На какие виды делятся успокоители качки?

3.Что представляют собой скуловые кили и их принцип действия?

4.Конструкция и принцип действия пассивных успокоительных цистерн?

5.Какие средства относятся к активным успокоителям качки?


6.Что представляют собой бортовые управляемые рули и их принцип действия?


Тема 2.2. Ходкость судна

2.2.1 типы судовых движителей и принцип их работы.

На морских судах чаще всего используют винты фиксированного шага (ВФШ) или виты регулируемого шага (ВРШ).

Гребной винт (ВФШ) представляет собой систему лопастей (от 2 до 8), каждая из которых является участком винтовой поверхности. Поверхность лопастей, обращенная в нос, называется засасывающей,. Поверхность, обращенная в корму – нагнетающей . Передняя кромка лопастей называется входящей, задняя – выходящей. ВФШ бывают цельнолитые и со съемными лопастями. Они делятся на винты левого и правого вращения. Винт правого вращения на переднем ходу, если смотреть с кормы, вращается по часовой стрелке, винт левого вращения – наоборот.

Сила упора, создаваемая винтом при его вращении с заданной частотой, зависит от его основных геометрических характеристик,

1. D В диаметр винта - диаметр окружности, описываемой наиболее удаленными точками лопастей (до 5 метров);

2. H геометрический шаг винта – линейное расстояние по оси винта, которое проходила бы ступица за один полный оборот при вращении в плотной среде. (величина шагового отношения H/D колеблется 0.8 – 1.8)

3. Θ дисковое отношение Θ= А/А d - для тихоходных судов ≈0.35

для быстроходных ≈ 1.2

А – суммарная площадь спрямленной поверхности всех лопастей винта;

А d – площадь круга, ометаемого гребным винтом при его вращении.

4. Z число лопастей.

а так же от скорости самого судна.

Существенное влияние на силу упора винта оказывает взаимодействие винта с корпусом судна. Силу упора без учета такого взаимодействия называют упором изолированного винта. С учетом такого взаимодействия – полезным упором или тягой . Для ВФШ изменение направления упора достигается реверсированием двигателя. ВФШ имеет максимальный коэффициент полезного действия только при одном режиме движения (как правило, полный передний ход).

В отличии от гребных винтов фиксированного шага, винты регулируемого шага (ВРШ) имеют в ступице приводной механизм, с помощью которого осуществляется разворот лопастей от положения «ППХ» до положения «ПЗХ». Таким образом, без изменения направления вращения ГД, осуществляется изменение не только величины, но и направление упора винта. ВРШ могут быть трехлопастными и четырехлопастными. В последнем случае лопасти располагаются по парно и смещены вдоль оси винта (ВРШ типа «тендем»). Угол разворота лопастей при переходе с ППХ на ПЗХ составляет 40 – 50 0 . Время разворота лопастей ВРШ составляет 10 – 15 сек.. Использование ВРШ позволяет получить полную мощность ГД на режимах, отличных от расчетных, обеспечивает увеличение скорости судна и экономичность работы его двигательной установки.. ВРШ развивает значительно большую тягу на малых ходах и на 40 – 50% сокращает время и длину тормозного пути. Установка ВРШ позволяет осуществлять дистанционное управление судном и использовать на реверсивные двигатели, что значительно повышает их моторесурс. К недостаткам ВРШ следует отнести сложность конструкции как самого винта, так и валопровода, их большую, по сравнению с ВФШ, чувствительность к ударным нагрузкам.

Вопросы для самоконтроля:

12. Какие типы движителей используются на морских судах?

13. Что представляет собой гребной винт (ВФШ)?

14. От чего зависит сила упора, создаваемая ВФШ при его вращении с заданной частотой?

15. Что собой представляет и как осуществляется разворот регулируемого винта (ВРШ)?


Тема 2.3. Управляемость.

2.3.2 Крен судна на циркуляции .

Если на судне, идущем прямым курсом, внезапно переложить руль, то в первый момент после начала перекладки траектория движения судна искривится в направлении. обратном направлению перекладки руля. В этот момент на судно действуют следующие силы (Рис.55а):

Рис. 55 а – схема сил, накреняющих б – схема сил, накреняющих судно

судно после начала перекладки руля. в период установившейся циркуляции.

Р у – поперечная составляющая сил, действующих на руль;

R y – поперечная составляющая сил, действующих на погруженную часть корпуса судна;

F ц – поперечная составляющая центробежных сил инерции судна, линия действия этой

силы направлена в сторону поворота судна;

Сила Р у приложена в центре давления руля, возвышение которого над основной плоскостью определяется аппликатой z′ d ; сила R y приложена на высоте z d , а сила F ц – в центре тяжести судна, определяемом аппликатой z g .


Момент центробежной силы F ц вызывает небольшой крен на тот борт, на который переложен руль (моментом силы R y пренебрегаем в виду малым действием этой силы в начальной стадии циркуляции). Этот крен усиливается моментом силы Р у , действующей на руль.


Итак, в первый момент после перекладки руля судно будет крениться на тот борт, на который переложен руль, т.е. внутрь циркуляции.


По мере изменения кривизны траектории центробежная сила уменьшается, а затем меняет знак, т.е. изменяет направление действия на противоположное (Рис.55б). Одновременно происходит нарастание момента от силы R y вследствие увеличения угла дрейфа и уменьшения момента от силы Р у из – за снижения скорости судна. В результате изменения характера действия указанных сил и моментов судно сначала выпрямляется, а затем начинает крениться в сторону, обратную направлению перекладки руля, причем наклонение судна оказывается тем больше, чем больше был угол крена в сторону перекладки руля. Изменение направления крена носит динамический характер.


Максимальное наклонение в сторону, обратную направлению перекладки руля, называют динамическим углом крена судна на циркуляции .


При дальнейшем движении судна угол крена уменьшается. Судно делает одно – два колебания, и после того как элементы движения устанавливаются, угол крена приобретает некоторое постоянное значение на установившейся циркуляции. Этот угол совпадает по знаку с динамическим углом крена, но последний, как правило, превышает угол крена на установившейся циркуляции в 1,5 – 2,0 раза.


Морской Регистр в действующих «Правилах классификации и постройки морских судов» предписывает определять кренящий момент на циркуляции по формуле:

m кр = 0,238 (z g ) (2.3)

где: масса судна с учетом присоединенной массы воды. участвующей в движении, т;


Скорость судна при выходе на циркуляцию, равная 80% скорости полного хода;


Длина судна.


Отсюда после соответствующих преобразований получим формулу для определения


угла крена на установившейся циркуляции:

θ 0 1,4 (z g ) (2.3.1)

Выражение (2.3.1), представляющее известную формулу Г.А. Фирсова, показывает, что угол крена, возрастающий пропорционально квадрату скорости при выходе на циркуляцию, обратно пропорционален метацентрической высоте h .


Расчеты дают хорошие результаты для транспортных морских судов, диаметр циркуляции которых обычно не превышает пяти длин судна при максимальном угле перекладки руля.


Согласно «Правилам классификации и постройки морских судов» морского Регистра», угол крена пассажирских судов от совместного действия кренящих моментов, возникших в результате скопления пассажиров на одном борту и действия внешних сил на установившейся циркуляции, не должен превышать 3 / 4 угла заливания или угла, при котором палуба надводного борта входит в воду или скула выходит из воды – смотря по тому, какой угол меньше; во всяком случае угол крена не должен превышать 12 0 .


Вопросы для самоконтроля:


1. Какие силы действуют на судно при перекладке руля на циркуляции?


2. Как действуют силы, накреняющие судно после начала перекладки руля и в период


установившейся циркуляции?


3. Как определяется кренящий момент на циркуляции, предписанный Регистром судоходства?


4. Как определяется угол крена на установившейся циркуляции?


5.Требования Регистра судоходства о максимальной величине угла крена у пассажирских судов?


ЛИТЕРАТУРА:

1. Ф.Н. Белан, А.М. Чудновский.Основы теории судна. – Л: Судостроение, 1978

2. И.И.Бендус. Теория и устройство судна.Часть 1.2-е изд. перераб.и доп.-Керчь.:КГМТУ, 2006

3. В.Д. Кулагин. Теория и устройство промысловых судов.- Л.; Судостроение, 19861. Л.Р. Аксюткин. Контроль остойчивости морских судов.- Одесса:Фенікс,2003

4. А.М. Горячов,Е.М. Подругин. Устройство и основы теории морских судов.- Л.;Судостроение,1981

5. Судовые документи: БМРТ « Николай Островский » , РТМА « Прометей »

6. В.Л. Фукельман. Основы теории корабля.- Л.;Судостроение,1977


ПРИЛОЖЕНИЕ I.

Понятие об остойчивости судна

При плавании в море на суда постоянно воздействуют различные кренящие нагрузки и в первую очередь ветер и волнение. Каким же образом может сравнитель­но небольшое судно противостоять шквальному ветру и обрушивающимся на палубу волнам, накреняясь то на правый, то на левый борт, но не опрокидываясь? Ответ па эти вопросы дает учение об остойчивости.

Остойчивостью называется способность судна, выве­денного из положения равновесия воздействием внеш­них кренящих нагрузок, вновь возвращаться в первона­чальное положение после прекращения этого воздейст­вия.

Остойчивость - одно из основных мореходных ка­честв, сохранение и поддержание ее является важней­шей задачей экипажа судна.

Термин «остойчивость» произошел от понятия об устойчивости равновесия тел, однако он имеет более ши­рокий смысл. При рассмотрении устойчивости обычно имеют в виду только малые отклонения от положения равновесия, а при рассмотрении остойчивости судна - как малые, так и большие. Отклонение судна от равно­весного положения в поперечной плоскости называется креном, в продольной - дифферентом.

Различают остойчивость при малых наклонениях (начальную) и остойчивость на больших углах крена. Выделение начальной остойчивости в самостоятельный раздел позволяет ввести ряд допущений, значительно упрощающих математические зависимости при ре­шении различных практических задач. Формулы началь­ной остойчивости могут быть применены до углов крена, соответствующих входу кромки палубы в воду в том случае, если скула не выходит из воды. Эти углы для обычных судов составляют 8-12° и более. Формулы начальной остойчивости следует рассматривать как частный случай зависимостей, относящихся к остойчи­вости на больших углах крена.

При рассмотрении остойчивости подразумевается, что судно наклоняется под действием пары сил; величи­на силы поддержания не изменяется. При этом объем подводной части сохраняется постоянным, а меняется только ее форма. Такие наклонения и соответствующие им ватерлинии, отсекающие одинаковые объемы, назы­ваются равнообъсмными. В задачах о начальной остой­чивости равнообъемные ватерлинии проводят через центр тяжести исходной ватерлинии.

Однажды при входе в порт Кале он совсем отказался повиноваться рулевому.

С полного хода врезался «Бессемер» в каменный мол. Его носовая часть превратилась в кашу из обломков.

Бессемер не стал чинить свой пароход. Он потерял навсегда всякий интерес к кораблестроению.

После Бессемера немало изобретателей и ученых работало над созданием успокоителей качки. Было предложено множество различных систем. Но только Макаров (1848-1904). немногие из них получили право на жизнь и на широкое применение.

Очень интересный тип успокоителя качки для военных кораблей был разработан в 1894 году выдающимся флотоводцем и ученым- адмиралом Степаном Осиповичем Макаровым.

Успокоитель Макарова выгодно отличался от успокоителей других систем простотой и дешевизной своего устройства и в то же время сильным противодействием качке. Впоследствии появился усовершенствованный и приспособленный для торговых судов успокоитель Фрама. Его устройство состоит из двух цистерн, выгороженных по бортам парохода. По высоте они расположены между днищем и палубой. Длина их не более десяти метров. Цистерны соединены трубой или каналом, проложенным по днищу. Получается вроде сообщающихся сосудов, у которых вода налита до половины высоты. Наверху цистерны сообщаются между собой воздушной трубой. Посредине трубы установлен регулирующий клапан. Через него можно перепускать сжатый воздух то в одну, то в другую цистерну. Как же действует такой успокоитель?

Представьте себе человека с коромыслом на плечах. На концах коромысла прикреплены одинаковые ведра, наполненные водой. Пока концы уравновешены, человеку легко качать коромысло. Он может так его качать, что ведра будут достигать земли. Теперь навесим на один конец еще одно полное ведро. Тут уж такой легкости качания не будет. Ясно, что конец с двумя ведрами будет подниматься медленно и с большим

усилием. Если перенесем добавочное ведро на другой конец коромысла, получится обратная картина.

Этот пример с ведрами мы и используем, чтобы понять действие успокоителя Фрама. Вот пароход при качке накренился вправо. Тогда и всю воду перегоняют вправо, но не сразу, а небольшими порциями. Если перегнать сразу, то вода своей тяжестью только поможет качке. А нужно, наоборот, чтобы она препятствовала. Воду перегоняют с таким расчетом, чтобы цистерна правого борта заполнилась в тот момент, когда этот борт начнет подниматься. Вот тогда полностью заполненная цистерна и будет вроде добавочного ведра на коромысле. Она будет уменьшать размах качки. Дальше начинает крениться левый борт. Вода тем же порядком перегоняется влево. Когда левый борт начинает подниматься вверх, в действие вступает целиком заполненная цистерна этого борта. Это похоже на то, как если бы мы перенесли добавочное ведро с водой на другой конец коромысла.

Устройство успокоителя Фрама.

Так попеременное переливание воды с одного борта на другой в несколько раз уменьшает размахи качки.

Действие цистерн Фрама было проверено в русском флоте в 1913 году. Вот как вспоминает об этом академик А. Н. Крылов:

«Была образована специальная комиссия. Судили, рядили месяцев десять, ни к чему не пришли: одни говорят, надо применять успокоители Фрама, другие говорят,-цистерны Фрама вредны, и все на заграничные журналы ссылаются. Наконец, в феврале 1913 года морской министр Григорович назначает заседание под личным своим председательством. Выслушивает противоречивые мнения комиссии, которая «ни к чему не привела, только время провела». И тогда обращается ко мне:

А вы что скажете?

Пока мы будем разными журнальными статьями руководствоваться, ни к чему не придем. Надо отыскать пароход, снабженный цистернами Фрама, назначить на него комиссию из наших офицеров, идти в океан и произвести всесторонние испытания, тогда мы получим свои данные - полные и проверенные.

Назначаю такую комиссию под вашим председательством, ищите пароход, берите с собой, кого хотите, и через неделю будьте в море».

Комиссия Крылова, проведя испытания на парохрде «Метеор», убедительно доказала, что польза от цистерн Фрама есть. Цистерны были испытаны в самых различных условиях плавания: от легкой зыби на море до жестокого двенадцатибалльного шторма. Емкость цистерн составляла всего полтора процента от водоизмещения судна, а размахи качки уменьшались втрое и вчетверо. Сейчас заполнение таких цистерн производится автоматически, и поэтому они называются активными.

Существуют еще гироскопические успокоители качки, или гироскопы. Главная часть гироскопа - тяжелый диск, который вращается вокруг вертикальной оси со скоростью до 3000 оборотов в минуту. Ось прочно закреплена в большой раме, опоры которой составляют одно целое с корпусом судна. Рама качается на этих опорах точно так, как качался на своей раме «ящик» парохода «Бессемер».

Пока нет качки, ось диска сохраняет свое вертикальное положение. Но вот начинается бортовая качка. Тут сразу же пускают в ход электромотор, вращающий диск. Диск становится волчком, вроде того, каким мы играли в детстве. И, как бы ни наклонялся от качки диск, его вертикальная ось, как ось всякого волчка, стремится сохранить свое прежнее вертикальное положение. Тут-то и проявляется действие гироскопа.

Положим, правый борт судна стремительно клонится к воде. Вместе с ним должна наклониться и вертикальная ось диска. Но она, по свойству волчка, упорно сопротивляется такому наклону. А поэтому ось давит на раму и через опоры рамы - на корпус судна. И давит как раз в сторону, противоположную наклону судна. Так гироскоп умеряет качку судна.

Недавно придумали новые успокоители качки - скуловые рули.

Это так называемый пассивный гироуспокоитель. В последнее время чаще ставят активный гироуспокоитель. У него рама
качается на опорах не сама по себе, а при помощи особого электродвигателя. Этим усиливается на опорах рамы давление, противодействующее крену судна.

Гироскоп - огромный механизм. Диаметр диска достигает четырех метров. Поэтому для гироскопов выделяют особое помещение больших размеров.

На судне, оборудованном гироскопами, качка почти не ощущается. Но зато гироскоп - очень сложный и дорогостоящий механизм и потому большого распространения для успокоения качки еще не получил. Зато
идея гироскопа широко применяется в устройстве различных приборов.

Недавно придумали новые успокоители качки. Это скуловые управляемые рули. Они напоминают боковые кили. Но боковые кили прикреплены к корпусу неподвижно. А скуловые рули могут автоматически поворачиваться специальным двигателем вверх и вниз. Их все время ставят в самое выгодное положение, чтобы они на ходу судна, подобно крыльям самолета, создавали подъемную силу. Вот эта сила и препятствует крену. Опыт использования этих успокоителей показал, что они хороши только для быстроходных судов. Когда качки нет, рули втягиваются внутрь корпуса, в особые «карманы». Это делается для того, чтобы они не тормозили движения судна.

Все, что здесь рассказано об успокоителях, относится к качке бортовой. А что же предпринимается для уменьшения килевой качки? Здесь специальных успокоителей не применяют. Усилия конструкторов направлены к тому, чтобы по возможности улучшить форму надводной части носовой оконечности судна. Например, делают у нее «развал» в стороны бортов, чтобы судно меньше «зарывалось», всходя на волну,

Успокоителями качки принято называть устройства, которые применяются для уменьшения амплитуды качки судна.
Действие установленных на судне успокоителей качки состоит в том, что они создают переменный стабилизирующий момент, противоположный по знаку возмущающему моменту волны. В настоящее время применяются успокоители только бортовой качки. Уменьшить амплитуды килевой и вертикальной качки с помощью успокоителей практически трудно, т.к. еще не созданы успокоители, способные развивать значительно большие, чем при бортовой качке, стабилизирующие моменты.
Успокоители качки делятся на пассивные и активные. Действие рабочих органов пассивных успокоителей основано на создании стабилизирующего момента за счет колебательных движений судна во время качки, т.е. при их использовании отпадает необходимость в специальных источниках энергии. В активных успокоителях переменный стабилизирующий момент создается принудительно с помощью особых механизмов, управляемых специальным регулирующим устройством, которое, в свою очередь, реагирует на колебания судна. Активные успокоители более эффективны, но на их работу нужно затрачивать дополнительную мощность.
Пассивные успокоители . К числу пассивных успокоителей качки относятся скуловые кили и пассивные успокоительные цистерны.

Скуловые кили являются наиболее простым и эффективным средством уменьшения бортовой качки и потому находят самое широкое применение.
Пассивные успокоительные цистерны могут быть двух типов: закрытого, не сообщающегося с забортной водой (I рода) и открытого, сообщающегося с забортной водой (II рода). Цистерны наполовину заполнены водой (иногда, топливом) и соединены каналами. Пассивные успокоительные цистерны наиболее эффективны при резонансной качке. При некоторых условиях и режимах нерегулярного волнения такие успокоители могут привести к увеличению амплитуд качки. Наличие свободной поверхности жидкости в цистернах также неблагоприятно влияет на остойчивость судна. Вследствие указанных причин пассивные цистерны в настоящее время практически не используются.
Активные успокоители . К активным успокоителям качки относятся бортовые управляемые рули, активные успокоительные цистерны и гироскопические успокоители-стабилизаторы.
Бортовые управляемые рули являются весьма эффективным средством уменьшения бортовой качки и получили широкое распространение на транспортных и особенно на пассажирских судах. Они размещены на специальных приводах, обеспечивающих изменение углов атаки по определенному закону, выдвижение их из корпуса и уборку внутрь корпуса.
Практика показывает, что бортовые рули целесообразно применять при скоростях, превышающих 10-15 узл. В этом случае бортовые рули приводят к значительному (в несколько раз) снижению амплитуд бортовой качки.
Активные успокоительные цистерны обычно выполняют в виде цистерн I рода. Для регулирования движения воды применяют либо насосы, установленные в водяном канале, либо воздуходувы, расположенные в воздушном канале. Управление насосом или воздуходувкой осуществляется с помощью специальной автоматики таким образом, чтобы можно было регулировать подачу воды из одной цистерны в другую и обеспечивать требуемое изменение стабилизирующего момента. Эффективность установки не зависит от скорости судна: цистерны одинаково умеряют качку на ходу и на стоянке. Недостатки активных цистерн: сложность конструкции, высокая стоимость, применение сложной регулирующей аппаратуры, снижение грузоподъемности судна необходимость затрат дополнительной энергии.
Гироскопический успокоитель качки представляет собой мощный гироскоп, вращающийся на оси в раме. Гироскоп устанавливают вертикально. Крен судна при бортовой качке вызывает поворот оси гироскопа – так называемую прецессию гироскопа. Вследствие этого возникает гироскопический момент, который является стабилизирующим моментом успокоителя. Гироскопические успокоители могут быть как пассивными, так и активными. У пассивного успокоителя прецессия возникает как реакция на качку судна. В активных успокоителях прецессия создается принудительно за счет передачи внешней энергии электродвигателю, управляемому автоматическим регулятором, реагирующим на режим качки судна. Недостатки: значительная масса, большая стоимость, сложность устройства и эксплуатации.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!